Internal skeletal analysis of the colonial azooxanthellate scleractinian Dendrophyllia cribrosa using microfocus X-ray CT images: underlying basis for its rigid and highly adaptive colony structure.
نویسندگان
چکیده
Dendrophyllid Scleractinia exhibit a variety of colonial morphologies, formed under the strict constraints on (1) budding sites, (2) orientations of the directive septa of offsets, (3) inclination of budding direction, and (4) those constraints in every generation. Dendrophyllia cribrosa exhibits a sympodial dendroid form, characteristically large coralla, and occasional fusions of adjacent branches within the same colony. Adjacent corallites are bound and supported by coenosteum skeleton. This study examined the inner skeletal structures at the junctions of fused branches using a non-destructive microfocus X-ray computed tomography (CT) imaging approach, and considered the reasons for the large colonial sizes and their adaptive significance. Three-dimensional reconstructions of two-dimensional X-ray CT images reveal that individual corallites are not directly connected in fused parts. Additionally, no completely buried individuals were found within fused skeleton. When adjacent branches approach one another, constituent corallites change their growth directions to avoid collisions between the branches. The adjacent branches fuse without a reduction in the number of constituent corallites, leading to the establishment of reticular and rigid colonial structures. In addition, a nearly even distribution of individuals on the colony surface facilitates efficient intake of nutrients. Thus, the growth of large D. cribrosa colonies involves avoidance of collision between constituent individuals, the reinforcement of colonial structure, and efficient uptake of nutrients. These observations provide insights on the dynamics of interrelationships between colony-making mechanisms and the adaptive strategies required under habitat conditions such as specific current activities.
منابع مشابه
Intrinsic Constraints on Sympodial Growth Morphologies of Azooxanthellate Scleractinian Coral Dendrophyllia
BACKGROUND Asexual increase occurs in virtually all colonial organisms. However, little is known about the intrinsic mechanisms that control asexual reproduction and the resultant morphologies of colonies. Scleractinian corals, both symbiotic (zoaxanthellate) and non-symbiotic (azooxanthellate) corals are known to form elaborate colonies. To better understand the growth mechanisms that control ...
متن کاملShearlet-Based Adaptive Noise Reduction in CT Images
The noise in reconstructed slices of X-ray Computed Tomography (CT) is of unknown distribution, non-stationary, oriented and difficult to distinguish from main structural information. This requires the development of special post-processing methods based on the local statistical evaluation of the noise component. This paper presents an adaptive method of reducing noise in CT images employing th...
متن کاملA COMPARISON BETWEEN THERMAL AND X RADIOGRAPHY FOR STUDYING THE INTERNAL STRUCTURE OF BIOLOGICAL
ABSTRACT Background: With respect to the difference in the interaction of thermal neutron and X rays with matter, using two radiography systems of thermal neutron and X rays will yield highly valuable information for studying the inner structure of biologic samples. Methods: The high sensitivity of thermal neutron to hydrogen, in particular, has led to recognizing this system as a useful tool ...
متن کاملA comparative study of microfocus CT and histomorphometry in the evaluation of bone augmentation in rat calvarium.
Microfocus computed tomography (micro-CT; R_mCT) is a dynamic noninvasive method for measuring bone regeneration. This study evaluated whether R_mCT was equivalent to histomorphometry in assessing bone augmentation. Two plastic caps of graft material with (experiment) or without hydroxyapatite (HA; control) were placed in the exposed calvaria of rats. Images of bone augmentation within the plas...
متن کاملComparisons of Hounsfield Unit Linearity between Images Reconstructed using an Adaptive Iterative Dose Reduction (AIDR) and a Filter Back-Projection (FBP) Techniques
Background: The HU linearity is an essential parameter in a quantitative imaging and the treatment planning systems of radiotherapy. Objective: This study aims to evaluate the linearity of Hounsfield unit (HU) in applying the adaptive iterative dose reduction (AIDR) on CT scanner and its comparison to the filtered back-projection (FBP).Material and Methods: In this experimental phan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of structural biology
دوره 189 1 شماره
صفحات -
تاریخ انتشار 2015